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Abstract

In this paper simple polynomial interpolation is used to derive arbitrarily high-order compact schemes for the first
derivative and tridiagonal compact schemes for the second derivative (consisting of three second derivative nodes in the
interior and two on the boundary) on non-uniform grids. Boundary and near boundary schemes of the same order as
the interior are also developed using polynomial interpolation and for a general compact scheme on a non-uniform grid
it is shown that polynomial interpolation is more efficient than the conventional method of undetermined coefficients
for finding coefficients of the scheme. The high-order non-uniform schemes along with boundary closure of up to 14th
order thus obtained are shown to be stable on a non-uniform grid with appropriate stretching so that more grid points
are clustered near the boundary. The stability and resolution properties of the high-order non-uniform grid schemes are
studied and the results of three numerical tests on stability and accuracy properties are also presented.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Compact finite difference schemes; Non-uniform grid; Polynomial Interpolation

1. Introduction

Compact high-order finite difference schemes which consider as unknowns at each discretization point
not only the value of the function but also those of its first or higher derivatives have been extensively
studied and widely used to compute problems involving incompressible, compressible and hypersonic
flows [27-33,35-38], computational aeroacoustics [6,21] and several other practical applications [39-
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44]. Compared to explicit finite difference schemes, these schemes are implicit and give a higher order of
accuracy for the same number of grid points and also provide high resolution characteristics. In addition,
compact schemes are more flexible in terms of application to complex geometries and boundary condi-
tions when compared to spectral methods. Lele [3] went through extensive analysis of compact schemes
and applied them for solution of compressible and incompressible flow problems. Deng and Maekawa
[23] and Deng and Zhang [22] developed non-linear and weighted non-linear compact schemes, respec-
tively, for capturing discontinuities. Prefactored small stencil compact differencing schemes which split
the implicit compact operator matrix into upper and lower matrices and are simpler to implement were
developed and analyzed in [24-26]. In [13] Mahesh presented and analyzed combined compact uniform
grid finite difference schemes which evaluate both the first and the second derivative simultaneously.
Goedheer and Potters [12] derived a fourth-order non-uniform combined compact finite difference scheme
using truncated Taylor series and used it to solve a model transport problem in one-dimension. In [15]
Chu and Fan derived sixth-order and eighth-order three point combined compact finite difference
schemes on a uniform grid and also mentioned the existence of local and global Hermite polynomials
whose coefficients were calculated using Taylor series expansion. The same authors later extended the
derivation of sixth-order combined compact uniform grid scheme to a non-uniform grid scheme in
[14]. Ge and Zhang [43] used a coordinate transformation from a non-uniform to a uniform grid to solve
a two-dimensional steady state convection—diffusion equation using a fourth-order nine point uniform
grid compact scheme. Finite volume compact schemes have been developed and applied to solve flow
problems in [17-20].

Traditionally compact schemes have been derived for a uniform grid. Recently, a number of authors
have investigated applications of high-order compact schemes to non-uniform grids. The usual approach
is to use a mapping from non-uniform grid to a uniform grid and apply the compact schemes for uni-
form grids directly on the mapped coordinate. Gamet et al. [5] adapted the compact schemes originally
developed for uniform meshes to non-uniform meshes using metrices of the grid. Cheong and Lee [6]
developed GODRP schemes which are designed to have locally the same dispersion relation as the partial
differential equation and have optimized dissipation characteristics at the non-uniform cartesian or cur-
vilinear grids. Visbal and Gaitonde [7] have shown that application of high-order compact schemes to
non-smooth and time varying grids using Jacobian transformation leads to spurious oscillations, unless
a proper filtering scheme is used. Kwok et al. [8] compared the resolution properties of B-spline and com-
pact finite difference schemes on non-uniform grids by transforming the non-uniform grid to a uniform
grid.

As outlined before, the popular method for application of compact schemes on non-uniform grids is
to use a Jacobian transformation from the uniform grid to the non-uniform grid. Carpenter et al. [9]
showed that for a sixth-order interior compact scheme on a uniform grid only a third-order boundary
scheme can be used without introducing instability, which results in a globally fourth-order scheme.
They also developed asymptotically stable schemes by removing the constraint of optimal accuracy
by increasing the stencil width of compact schemes thus enabling several parameter boundary closures.
Abarbanel et al. [10,11] developed a methodology for construction of high-order compact schemes on
uniform grids for hyperbolic initial and boundary value problems by generalizing the procedure pro-
posed by [9]. However, construction of stable schemes using this method is a difficult task and has been
done only for up to sixth-order schemes. Recently, Zhong and Mahidhar [4] presented high-order (up
to 12th order) non-uniform stable finite difference schemes with boundary closure of same order as the
interior.

The conventional method of deriving compact difference schemes using a truncated Taylor series and
determining the coefficients of the scheme based on the desired accuracy becomes cumbersome in case of
high-order schemes on non-uniform grids since it requires computation of different sets of coefficients
for each grid point as the grid spacing is no longer uniform and is also prone to numerical errors involved
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in matrix inversion. Thus it will be useful if coefficients of the compact scheme could be obtained through a
direct derivation. Hence, our objective in this paper is twofold:

e First we present a simpler way of deriving the compact schemes by use of polynomial interpolation and
for an illustration describe the procedure for two test cases. For the case of first derivative we use Her-
mite—Birkhoff interpolation [1] to obtain an explicit form of compact difference schemes. For the case of
second order or higher derivative, the polynomial interpolation problem to be considered is a special case
of the general Birkhoff Interpolation problem [1]. Suzuki [2] derived a method of constructing the inter-
polation polynomial for the (0,q) Birkhoff Interpolation problem (0 represents function values and ¢ rep-
resents gth derivative) from the polynomials of (0,1) Hermite—Birkhoff interpolation polynomials and
also gave condition for existence of these polynomials. However, in this paper we use a different simpli-
fied approach in order to derive the explicit analytical form for the general second-order tridiagonal
scheme. The schemes constructed by using polynomial interpolation correspond to the Padé schemes,
in that they have the highest accuracy within the family of compact schemes that can be constructed
on a specified computational stencil.

e Next we evaluate the stability of high-order (up to 14th order) non-uniform compact schemes with same
order of boundary closure as the interior for a grid with grid points clustered at the boundary following
the approach of [4] for the case of high-order finite difference schemes on non-uniform grids and deter-
mine the amount of grid stretching required to obtain stable schemes. The schemes are then tested by
computing solution of linear one-dimensional and two-dimensional wave equation with time oscillatory
boundary conditions and a two-dimensional linear convection—diffusion equation.

2. Derivation of compact schemes by direct polynomial interpolation
2.1. Polynomial interpolation

A general compact finite difference scheme for one dimension along x centered at x; has the form
ul? + jelnajuﬁ.”) =D jer, b + >, bjuj, where u; are the function values given at set of points x; € 1, U 1,
and u;" are the values of the pth derivative of the function given at set of points x; € [, and the point x; is
included in the set 7,,,. In the following sections we shall consider the problem of finding out the coefficients
a; and b; in the compact scheme for two values of p, 1 and 2, corresponding to first- and second-order com-
pact schemes, respectively, using univariate (0,p) interpolation polynomial, where (0,p) refers to the fact
that polynomial interpolates through an arbitrarily distributed unique set of points on which either the
function value or the value of pth derivative of the function or both have been specified.

2.2. (0,1) Interpolation

Consider a set of n points I, on which values of the function and its first derivative have been specified
and another set of m points I,, on which only function values have been specified. The independent variable
representing the points is x;, i being the index of the node and the function values are given by u; = u(x;) and
the first derivative is given by «, = /(x;). Then a polynomial u(x) of degree <2n + m — 1 that assumes the
values u; = u(x;), i € I, U I, and u}, = u'(x;),i € I, is of the form

u(x) = Y wip,(x) + Y ujg,(x) + Y uiri(x), (1)

icly icly i€lp

where the polynomials p(x), ¢,(x) and r/(x) satisfy the following conditions:
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pi(x)) =9y Viel,, Yjel,Ul,, pix;))=0 Viel,, Vjel,
¢;(x;))=0 Viel,, Vjel,Ul,, q(x;)) =0, Viel,, Yjel, (2)
r,(xj)zél] VIEI,,,, VJEIHUIWH r;(.xj):o VIEI,,,, V]EI,,,

where ¢, is the Kronecker delta. The conditions (2) suggest following form of the polynomials p,(x):

IR IR PR
pi(x) - Hm(xi) lz( ){1 + ;Ar( 1) }7 € [m (3)

where /;(x) (lagrange polynomials on 7,) and [I,,(x) are defined as

zf(x):w and () = [T - x)-

Hje],ﬁ&i (x; — x;

Using (2) and (3) it is easy to find that
_ Hm(x) e 2 _ n' X H:n(xi) X — X i
)= oy 1= () + B ) we, @
A similar analysis for ¢g,(x) and r{(x) gives
X) = (x—x,-)Hm(x) "(x 2 i ri(x) = Hn(x) : ™y i
) =D ey wen, e = {0 e e, )

where []'(x) are lagrange polynomials on 7,, and [[,(x) = [[ ¢, (x —x;).
2.3. (0,2) Interpolation

Consider a set of n points I, on which values of the function and its second derivative have been
specified and another set of m points I, on which only function values have been specified. The func-
tion values are given by u; = u(x;) and the second derivative is given by u/ = u”(x;).Then a polynomial
u(x) of degree <2n+ m — 1 that assumes the values u; = u(x;), i € I, U I, and u/ = u"(x;), i € I, is of the
form

ulx) =Y wip(x) + ) ulq(x) + Y wiri(x), (6)
icl, i€l, i€ly
where the polynomials p,(x), ¢,(x) and r{(x) satisfy the following conditions:
pi(x)) =9y Viel,, VYjel,Ul,, pl(x;))=0 Viel, Vjel,
g:(x;) =0 Viel,, jel,Ul,, q/(x;)) =0, Viel,, Vjel, (7
rilx;)) =90, Viel,, Yjel,Ul,, H(x)=0 Viel,, Vjel,.

As before we have the following form of the polynomials pAx):

7Hm(x) nx . x_x_r l
pi(x) - Hm(xi) lz( )(1 + ;Ar( l) >a S ]n' (8)
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Differentiating this relation twice, putting x = x; and using (7) we have

[1, (@) o+ {%}

2A2+2A1{Tx‘i)x)}, =0, j=i

X=X

Sl (T} | v (T ] (B
=0 Vj#i, iel, andjeI:,:xj / | 9)

which gives n equations in n unknowns A,A4,,...,A4,. Similarly using (7) if ¢i(x) is assumed to be of the
form

I e (S p o)
M@—Hﬁma<(§ya »>, el, (10)

we have for the coefficients B;,

2B, + 2BI{H1'"_I(:)(§)(X) } =L =i
s [ L@ (LR ]
2B ”{Hm»}wf“"){ NJ}M]O
Vi#i, i€l,and j€I,. (11)
Also from (7) if form of r{x) is
(x :H”(x) "(x y x—x;) i
i) HAﬂV”)(“+,IQ( J>, el, (12)

we have for the coefficients C;

seefemorflge | e L | et L
7: 0, Vvjel,, i€l,. - | | (13)

2.4. Scheme for first derivative

The general compact scheme for the first derivative centered at x; can be derived from the interpolation
polynomial given by (1), (4) and (5) by taking the first derivative at x = x; as
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u, + Zaju; =bu; + Z biu; + chuj,

frofis)

e
% = %{mx»}%

¢ = ng;){z( Y { —{21;’(xj)+%}(xi_xj)]_

Using proper choice of sets of points, I, and [, arbitrary order scheme can be constructed for the
interior or the boundary on a non-uniform grid. Also if I,, has m points and 7, has n points then the
order of the scheme will be 2n + m — 1. For example fourth-order accurate first derivative tridiagonal
compact schemes for interior and boundary points for a uniform and a non-uniform grid with the dis-
tribution of nodes given by x;=x;+h(i — 1), i=1,2,...,N and x; = x; + h(i — 1)2, i=1.2,...,N, respec-
tively, are presented in Table 1 along with the choice of sets I, and I, needed to derive them.
Additional examples of first derivative compact finite difference schemes on uniform and non-uniform
grid are listed in Table B.l in Appendix B.

2.5. Scheme for second derivative

The method discussed in Section 2.3 can be used to derive the form of general tridiagonal compact
scheme for the second derivative for an arbitrary grid point distribution. For deriving the interior scheme
consider a case where I, = {i — 1,i + 1} and function values are prescribed at another 7,, nodes with node
i€l,,. The interpolation polynomial for this case can be obtained as

Table 1

Compact schemes for first derivative

Index i 1,1, Uniform grid Non-uniform grid
x;i=x1+h(i—1) Xi= x+h(i—1)7

1 {34, (1,2} uy + 3uy = —gln+ u) + 3y = —gn

3 3 i
22 20 et 11 1 1
gtz t 33 — Taogt4

(2i— l)
16(i—1)°

T Rhi— 1 {2, 3+4 }”l 1+ 2{21 1+4 }”lﬂ

(2i-3)* 4 ”
up_y +up+ (I 17 Ui = it

23,....N—1 {i— i+ 1}, {0} Wb+, =

ﬁ(um —ui1)

3(N-2
N {N—2N-3}{N.N -1} 11475\/ +3“35v71 = “fv + (N—3 )”ﬁv = {2v 3 Jr2(21v + 3(2N 5)}{h}“N
GhUN — pUN-1 N 2
— 3N -2 + gN -3 Haws + 2(21\/ — i} X Tyt uv-1

3(2N-3)
TGN -2)2N—5)(2N—7) UN-2

(2N—4)(2N-3) s

+thOA/ 5)(2N—7)(2N—6)
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u(x) = ; {(E;C - i:;gj—_x;ll))};;n(x) (1 Culr =) + Cyx = )
e e IR IR S
{2 T 1 i+ 1=
et o e
B e ) { IR T

Table 2
Coefficients for interpolation polynomial and second derivative tridiagonal scheme for interior grid points

D = 6+4(zis1 —Tim1) {H Ezti; - %mzl:i} —2(Tip1 — xi- 1)21_[ (:i;H jl i
T _ I a0 ST @) o [T, @) 1, @) I @) eIl @) [T, @ie1)
AID = PG AT A x“’{n S ey s ey G G B Vi  ezvyy s ey

+ _ H,,L(zerl) I, i1 H7u(zz+1) _ 2 Hm<z1+1) _ [, (i) o Hm(z1+l) Hm Ti— 1)
4D = e e ~ ey~ Gream e o [ T @ = o0 e S e

arp = -l ol o g {fren e fatend s pffaen [l
v = afpgfhees - e - e (e - st s o oo B
10— (et e st

BfD = 1—(xi+1—xi_1)%

BiD = ‘{(mﬁ ) %8:3}(9’”1_“—1)2

ByD = 1—(zj—1— 1’2+1)ﬁ

cyD = (sf;:ifz;_if% {0 gl s oo (s - s RO EES

@) I, @)

o (@it1)

Ti—1—; Tip1—T; (xic1—2;)?

[T, (@i-1) Tit1—Ti—1 i1 —Ti—1 (@ig1—wi1)? [, (@i+1) Tit1—Ti—1 Tip1—Ti—1 (wig1—wi1)?
+ | (xL 1) {4 Ti—1—Tj +4 Tit1—Tj -2 ($z+1—it;)2 }— {4 +4 +2

/
(Tip1—Ti— 1) Hm wi-1) Hm('L”'l

) — 1
CyiD = 2{(75”1 ;) + o= ac])Q + @ l—z])(zﬁl—w])} @ir1—2)@i1—2;3) [, (@i-1) |1, (@ir1)
_2H7n(lz+1)am 1=Tit1 1 1 _21_[ (@iz1) zigq—i1 1 1
H (Tig1) Ti-1—%j Ti—1—Tj Tit1—Tj Hm(zz 1) Tit1—%; Ti—1—T; Ti+1—Tj
4y . 2]'[ (i) {By (2zi—xit1—xi1)+B; (wi—zi1)(32i—2Tit1—Ti }+H (zi)(@i—xip1)(@wi—xi—1){ By +(@i—wi—1)By }
i =

(@ir1—zi-1) [, (@i-1)
o 2 [T, (@) By Cri—wipr—wi 1)+ B (vi—wig1) (32 —2wi 1 — zz+1>}+1'[ ;) (@i —wi1)(wi—wi1){ B +(wi—2:41) BF }
i+l - (@ici—wiy1) [ [, (@it1)

! — — ” — —
2], @) {l+AT Qui—wit1—zi—1)+4; (wm_xi—l)(:;xz_?il«'ivrl_Ii—l)}"'Hm('Iz')(ﬁz_37i+1){1+A1 (mi—wi—1)+A; (mi—wi—1)*}
($i—1—mi+1)Hm(f5i—1)

2 H;, (ma){1+Af (2zi_x’i+1_$i71)+A;(1’l_Ii+l)(3$i_2$i—1—Elif»l)}"'l_‘[:;’(fl’i)((li—$z‘—l){1+AT (zi—wit1)+ AT (@i—i11)?}
(wip1—zi-1) [ [, (is1)

b, _ (202i 490y, {M n llml(ﬂfz)} + {2+211n (23)(2xi—2ip1—2i-1) + l;n” (Iz)})

(xi—zit1)(xi—zi—1) (zi—rit1)(zi—zi1)
b= [{ow (1 s e ) v o (2 S 4 ) (e +h  a
20 (o) (e + { Gy 1+ Ol — ) + O — ) 1 )|

Yi(@j—zig1) (@5 —Tig1) (lj_ll+1)(l]_‘ll 1)
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with the condition for existence of polynomial given by

34+ 2(xi+1 _ xi_l){H:n(xiH) H:n(xil)} _ (le _ xi—1)2 H:n(xi+]) H:n(xl:,l)

I i)  TL () [L, (xier) TL, (i)

The general form of the tridiagonal scheme, obtained by differentiating above polynomial twice and then
evaluating the derivative at x = x;, is

£0.

" " "
Qv+ +aauy, | = bi_yui_y + by + by + g bju;. (15)
JEIm#i

The coefficients of the interpolation polynomial A7, 45, A, A5, By, B,, Bf, By, Cyi; and C,; and the
scheme a; _ 1, a; + 1, b; _ 1, b;, b; + | and b; are given in Table 2. The order of the scheme if I,,, has m points
will be m + 2. For deriving boundary scheme corresponding to the tridiagonal interior scheme consider a
case in which I, = 2 and function values are prescribed at another 7, nodes with node 1 € I,,,. The interpo-
lation polynomial for this case is

= N (Emx e [ kX)) L ) x=n )
= ; (xf_xz)lj( ){1 ZT(X2)+(x2_xi)l7,(x2)} ‘]+Hm(x2){1 2 H:n(xz)} ?

X=X Hm(x) "
/ Uy
2 [l(x)
with the condition for existence of polynomial given by

[T, (x2)
[, (x2)

The form of boundary scheme then obtained by differentiating above polynomial twice and then evaluating
the second derivative at x = x; is

+

= 1} (x2) + (x2 = x))1} (x2) # 0.

Ul + axuy = byuy + bauy + E bjuj,
JEIm#1

@ — {xz —xi [T,00) H:n(xl)}
2 I IIG(2))
! 207 (x1) [ 17 (x2) + 2002 — x0) I} (x2) 217 (x2)
b] = ll X1 7 2 m! I
( )+xl — X2 { ZT(XQ)‘F(Xz*xl)ZT (Xz) }+(x2—x1)lr1"(x2)+(x2—x1) l’ln ()Cz) (16)
x—xi [[,)IL () TT,(x) H:;(xz)}

_ (1T, 0) _
bz_{Hm(xz)+ 2 Hm(xz)H:n(xz) H:n(xz) [1,0x2)

" (x — xz)l;fl(xz) — (% — xl)zl}"’ (x2) ZI'fl/(xl) lf(xz) +2(xy — xl)l;.'" (x2)

J

1 7 m m'
’ (=) (02) = (2 =) ° 10 (r2) X=X [ (%) + (%2 — %) 1] (x2)

For example third-order accurate second derivative tridiagonal compact schemes for interior and bound-
ary points for a uniform and a non-uniform grid with the distribution of nodes given by x; = x; + (i — 1),
i=12,...,Nand x;= x; + h(i — 1), i = 1,2,...,N, respectively, are presented in Table 3. The choice of sets
I, and I, needed to derive these schemes is the same as those for the first derivative schemes. Two addi-
tional examples of second derivative compact finite difference schemes on uniform and non-uniform grid
are listed in Table B.2.
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Table 3
Compact schemes for second derivative
Index Uniform Grid Non-uniform Grid
i zi=x1+h(i—1) z; =1z, + h(i —1)2
" " 13 " 196,/ 119
1 uy +4duy = 5w Uy — J3Uy = —Fgrz Ui+
27 15 1 107 71 11
—hzU2 T pzUs — Rzl 527 U2 ~ T307 U3 T TRopz U4
(2i—1)(44%—-16i+11) N
4(—1) (20 —407+19) Uiy + Uy
1.,n noo1,n (2i—3)(4i*—5) "o
2,3, o5 qolio1 H Ut gt T I DR —20i10) Yitl =
N —1 _ 6 (’u +u ) 3(2i—-1) Uiy — 12 W
52 \Wi—1 i—1 (i—1)(20i2—40i+19)RZ “i—1 — ([202—40i+19)hZ “i
_12 ... 3(2i—3) .
5nz i + oD@ g0 o)Az Vit

n o 120(N=2) 4
NT N3 Un_1 =

12N 26 (6N-17)C
{3(2N—3)(2N—4)(2N—5) + (QA’TS)(QN—5)(21N’—6)}
wy +4duy_y = x{ i Yun — {4(%;3)1(8}?/:?)3(21\'76) +
. : o7 3C(AN—14)(2N—4
N BUN — FEuUN-1 N —(3)(2]\’ —?5()(2./\/—)6)2 Hazun—1+

15 1 8N—18 3C(2N—9)
THITUN-2 — FEUN-3 {(2iw'74)(21v75)(2N77> + (2;\77:3)(21\’76)(2]\/—7)}

1 6N—11
{aztun—2 — {spr—sEN—oer— —
22N-4)C YER .
BN—5)(2N—6)Z2N-7)J 1z SUN-3

1 1 1 1 1 1
h - - :
where € {2N3+2(2N4)+3(2N5)}/{2N5+2(2N6) 2N3}

In general, interpolation polynomial for constructing pentadiagonal and compact schemes with longer
stencil for the derivative can be obtained numerically using the technique discussed in [2]. This will involve
inversion of an n X n matrix which will always be computationally less expensive than using method of
undetermined coefficients which requires solution of 2n + m — 1 simultaneous linear algebraic equations.

3. High-order non-uniform grid schemes with boundary closure
3.1. Grid-spacing

The main limiting factor in the application of high-order (up to 14th order) compact schemes in practical
computations is the numerical instability of the high-order boundary closure schemes. The high-order finite
difference schemes are based on use of high-order polynomial interpolation which are known to show oscil-
lations near the boundary when a uniform grid is used. It has been shown in [4] that clustering of grid points
near the boundary for the case of high-order finite difference schemes enables use of boundary closure
schemes which are of the same order as the interior. Here we follow the same approach and control the
grid spacing using the stretching function proposed by Kosloff and Tal-Ezer [16] for a spectral method,

_ sin”! (—a cos(mi/N))

— . i=0,....N, (17)

i
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where the parameter « is used to change the stretching of the grid points from one limit of a Chebyshev grid
at o — 0 and the other limit of a uniform grid at o = 1. Hence, by controlling the value of o the clustering of
points near the boundary can be controlled and an optimum value of o for which the scheme is stable can be
found.

3.2. Asymptotic stability analysis

The asymptotic stability of the high-order compact schemes with boundary closures is analyzed by com-
puting the eigenvalues of the matrices obtained by spatial discretization of the following wave equation:

Ou Ou

e =0 18

TR (18)
in a fixed computational domain (—1,1). The non-periodic boundary condition is specified at x = —1 to a
fixed value u(x = —1,¢) = f(r). After a computational grid is assigned to the domain, the spatial derivatives

at all grid points, including the interior and boundary points, are discretized by a compact finite difference
scheme. Note that if the grid is not time varying, coefficients of the scheme can be calculated and stored
once for all at the beginning of the computations. In addition, the boundary closures are derived using
an increased stencil width compared to the interior schemes so that they have the same order of accuracy
as the interior schemes. The derivatives at all grid points including interior and the boundary can be com-
bined and written as

[P’} = [O{u} or {u'} = [M]{u}. (19)
Substituting the approximation (19) into the wave equation with the non-periodic boundary condition at
x = —1 leads to

% = cMu + g(t). (20)
The asymptotic stability condition for the semi-discrete equations is that all eigenvalues of matrix M
contain no positive real parts. This is a necessary but not sufficient condition for the stability of long-
time integration of the equation. Fig. 1(a) shows the eigenvalue spectrum for a 10th-order (7-5)pen-
tadiagonal scheme on a uniform grid of 101 points. It can be observed that there are two eigenvalues
in the unstable region of the spectrum. Thus a 10th-order pentadiagonal scheme with a 10th-order
compact boundary closure will not be stable on a uniform grid. In order to stabilize the 10th-order
scheme, a stretched grid given by (17) is used and it is found that the stability of the scheme im-
proves as the grid becomes more and more stretched towards the boundary. Thus two unstable eigen-
values become less unstable for o =0.9970 and 0.9966 and are completely stable for o« =0.9965 as
shown in Fig. 1.

In addition, as the order increases the amount of stretching required for stability, which is also a
function of the number of grid points », increases. Fig. 2 shows the variation of grid stretching
parameter o and corresponding Ax., required to obtain stable boundary closure for various high-or-
der compact schemes with the total number of points N. The Ax,;, is normalized by grid spacing for
a uniform grid with same number of grid points, i.e, AXunirorm = 2/N + 1. The plots show that higher
order schemes require smaller Ax,;, for stability and as N increases, value of Axpin/AXuniform ap-
proaches a constant value, which is consistent with the results of [4] for high-order finite difference
schemes. It is also observed that the 12th-order (11-3)tridiagonal, (9-5)pentadiagonal and (7-7)septadi-
agonal schemes have nearly same stability requirements. The main advantage of this method com-
pared to a spectral scheme is that minimum required grid spacing for obtaining stable schemes will
be of O(1/N) compared to O(1/N?) for spectral methods which leads to very severe timestep restric-
tions [4].
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Fig. 1. Eigenvalue spectrum of the spatial discretization matrix for the 10th-order pentadiagonal scheme on (a) a uniform grid of 101
points, (b) a stretched grid of 101 points with o = 0.9970, (c) a stretched grid of 101 points with & = 0.9966, (d) a stretched grid of 101
points with o = 0.9965.

3.3. Fourier analysis

The resolution ability of the schemes is studied by computing the dispersive and dissipative errors using a
Fourier analysis. The trial function for this on a periodic domain is u(x) = ¢**. The exact first and second
derivatives of this trial function at nodes x; are ike'* and —k*e™i . Application of the trial function to a first
derivative compact scheme given by (14) leads to numerically computed first derivative of the form ik'e’,
where

b+ Zjelmﬁbjeik(xﬁx") + Zjelncjeik(xﬁxf)
1 .

K= — ‘
1+ Eje[najelk(x/ )

(1)
The dispersive and dissipative errors are then given by the real part Re(k’ — k) and the imaginary part Im-
(k' — k), respectively. The dispersive and dissipative errors will be different at various grid points for a
non-uniform grid for a given compact scheme and here we present maximum dispersion and dissipation
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Fig. 2. (a and b) Variation of grid stretching parameter o required for stable boundary closure, with the total points used, for various
compact schemes. (c and d) Variation of minimum Ax required for stable boundary closure with the total points used, for various
compact schemes.

errors with x; given by (17) for an alpha value of 0.9. The dispersion and dissipation plots of k' vs. kh for
various first derivative compact schemes are shown in Fig. 3, where / is the largest grid spacing for the par-
ticular grid chosen. The plots show that resolution of the first derivative schemes improves as order is in-
creased. As expected, the dispersion errors are reduced with increasing order of the schemes and also for the
same order a pentadiagonal scheme has lesser dispersion error than a tridiagonal scheme and more disper-
sion error than a septadiagonal scheme. It is also found that the dissipation errors are non-zero, unlike the
uniform grid schemes and increase with rising order of the scheme. In addition, for a given order a penta-
diagonal scheme has more dissipation errors than the corresponding tridiagonal scheme and lesser dissipa-
tion errors than the septadiagonal scheme.
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Fig. 3. Comparison of modified wavenumber for various non-uniform grid first derivative compact schemes.

Application of the trial function to a second derivative tridiagonal compact scheme given by (15) yields
numerically computed second derivative of the form —k"*e*", where
B b + b1e*ti1=x) 4 p, ekl =) 4 Ejgm#bjeik(xf*x”)

" __
k - 1 + ai,]eik&i’lix") + ai+leik(x,-‘ 1—Xi) . (22)

The dispersion and dissipation plots of k"?h* vs kh for various tridiagonal second derivative compact
schemes are shown in Fig. 4, where / is the largest grid spacing for the particular grid chosen.The plots
show that the resolution of the second-derivative tridiagonal schemes improves with the increase in order
along with a decrease in both dispersion and dissipation errors.
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Fig. 4. Comparison of modified wavenumber for various non-uniform grid second derivative compact schemes.

4. Numerical results

The high-order compact schemes of upto 14th order developed in the earlier sections are used to solve
one- and two-dimensional linear wave equation and a two-dimensional model convection—diffusion equa-
tion. For simplicity, only tridiagonal compact schemes are used for computations, however, we expect pen-
tadiagonal and septadiagonal high-order schemes to follow similar trends. The results show that schemes
are stable and offer very good accuracy.

4.1. One-dimensional wave equation computations

The one-dimensional wave equation given by (18) and with the non-periodic boundary condition at left
boundary given by u(—1,¢) = sin(wnz) is solved in a fixed computational domain (—1,1) with ¢ =1 and
w = 1. Computations are performed using 4th- (3-3), 6th- (5-3), 8th- (7-3), 10th- (9-3), 12th- (11-3) and
14th- (13-3) order tridiagonal compact schemes. The time advancement is accomplished through a
fourth-order Runge—Kutta scheme and the time step is chosen to be small enough so that the temporal er-
rors are always smaller than the spatial errors. Fig. 5(a) shows a typical result on the comparison for the
10th-order tridiagonal scheme on a stretched grid with « equal to 0.9874 with the exact solution at time
t = 2.2. The boundary closure is stable and there is excellent agreement between the numerical and exact
solutions. On the other hand, computations using same scheme on a uniform grid are unstable as shown

in Fig. 5(b). Figs. 6(b) and (c) show the growth of the average error, \/ le(u, — ucxam)2 /N, with time
for a 10th-order tridiagonal compact scheme for three sets of grids having 25 points, 35 points and 51
points for uniform grid and a stretched grid with a value of grid stretching parameter o which makes
the scheme just stable for a particular number of grid points. It can be observed that the error diverges
exponentially for the case of uniform grid, whereas it remains bounded and stable for the stretched grid.
The average error for various schemes for various grid sizes with a grid stretching parameter value equal
to 0.8 is shown in Fig. 6(a). The value of stretching parameter o was chosen to be equal to 0.8 in all the
cases so that stable schemes are obtained for all grids for all orders of accuracy. As expected, for a given
number of grid points, the error decreases as the order of schemes is increased. In addition, for high N the
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Fig. 5. Comparison of numerical solution with the exact solution using a 10th-order(9-3) tridiagonal compact scheme on (a) a
stretched grid (¢« =0.9874) at 1 =2.2 s and (b) a uniform grid at 7 = 1.7 s with 51 grid points.

error no longer decreases with increase in order due to the fact that numerical machine precision limit is
reached.

4.2. Two-dimensional wave equation computations

In this section, we consider a model two-dimensional linear wave equation problem [10]
Ou Ou Ou
e R >
atatey =0 x€[0,1], ye0,1], £ >0,
u(0,y,¢) =sinw(y — 2¢), u(x,0,¢) = sinw(x — 2t),

u(x,y,0) = sinw(x + ).

(23)

This problem has an analytical solution given by u(x, y, ) = sin w(x + y — 2¢). We solve this problem using
4th- (3-3), 6th- (5-3), 8th- (7-3) and 10th- (9-3) order tridiagonal compact schemes for 21 x 21, 31 x 31,
41 x 41 and 51 x 51 grid points with the non-uniform grid given by the following stretching function:

xj:l+sin71(—oc.cc7)?(7ti/N))’ i=1,...,N,
2 2sin” « (24)
1 sin~'(—acos(nj/N))

V=27 2sin"'o A

The value of w is set equal to 2n. The time advancement is accomplished through a fourth-order Runge—
Kutta scheme and the time step is chosen to be small enough so that the temporal errors are always smaller
than the spatial errors. The average error for all the schemes for various grid sizes with a grid stretching
parameter value equal to 0.9 is shown in Fig. 7(a). As expected, for a given grid, error decreases as order
of the scheme is increased. The value of stretching parameter parameter « was chosen to be equal to 0.9 in
all cases so that the corresponding one-dimensional compact differentiation operator is stable for all the
non-uniform grids. Note that it has been shown in [4] that the stability properties of the one-dimensional
case are preserved for two-dimensional case if the differentiation operator matrix (represented by M in
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Section 3.2) has a complete set of eigenvectors. Figs. 7(b) and (¢) show the growth of the average error,

Z?I:I j.vzl(u,-j - uexact)z/Nz, with time for a 10th-order scheme for three sets of grids 21 x 21, 31 x 31
and 41 x 41 for both a uniform grid and a stretched grid with grid stretching parameter « equal to 0.9.
It is observed that the error diverges exponentially for the case of uniform grid, whereas it remains bounded

and stable for the stretched grid.

4.3. Two-dimensional convection—diffusion equation computations

The high-order non-uniform grid compact schemes are further tested by computing the linear decay of a
two-dimensional convection—diffusion equation bounded by two parallel walls [34],
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ou o tu_ 10
o ox 0y RO?
The boundary conditions and the initial condition are
u(x,0) =u(x,1) =0,
u(0,y,1) = Ce®/*sin(nmy)sin(kx)e ™', o, = R(1 + (2n1/R)*) /4.

This model problem is used to test the accuracy of the high-order non-uniform second derivative tridiag-
onal schemes. The analytical solution for this problem is given by



R.K. Shukla, X. Zhong | Journal of Computational Physics 204 (2005) 404-429 421

u(x,y, 1) = Ce®’? sin(nmy) sink(x — t)e".
We solve this problem using 4th- (3-3), 6th- (5-3), 8th- (7-3) and 10th- (9-3) order tridiagonal compact
schemes for first derivative and third- (3-3), fifth- (5-3), seventh- (7-3) and ninth- (9-3) order tridiagonal
compact schemes for the second derivative, respectively. The values of parameters are R = 10, k£ =0.01,

C=1, and n = 3. The computational domain, bounded by (0,2r/k) x (0,1), is discretized using 51 x 21,
51 %31, 51 x41 and 51 x 51 grid points with the non-uniform grid given by

. .
xz_2n(1+s1n ( accos(m/N)))’ I=1.... N,

2 in~'
lk in”'( 2S(m /oc ) 20
sin”~ (—ocos(mj/N .
=4 , =1,...,M.
A 2sin "o /

The time advancement is accomplished through a fourth-order Runge-Kutta scheme and the time step is
chosen to be small enough so that the temporal errors are always smaller than the spatial errors. For this
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Fig. 8. The contours of instantaneous solution at t=1 for 51 x 21 grid with o = 0.9.
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particular problem the schemes are found to be stable on both uniform and non-uniform grids. Fig. 8 shows
the comparison of contour plot of the instantancous solution at time =1 for various high-order non-
uniform grid compact schemes, with a grid stretching factor (x) value of 0.9, with the exact solution.
The plot shows that fifth-order and seventh-order schemes are able to resolve the contour of the instanta-
neous solution better than the third-order scheme. Fig. 9 shows the plot of average error,

\/ ZLZ/MZI (u; — uex.‘,a)2 /NM vs. order for all the schemes for various grid sizes with grid stretching param-
eter values equal to 0.9 (non-uniform grid) and 1.0 (uniform grid) at time 7 = 1. As expected, for a given
grid, error decreases as the order is increased both for uniform grid and non-uniform grid compact
schemes.

5. Conclusions

In this paper simple polynomial interpolation is used to derive compact finite difference schemes over
non-uniform grids with arbitrary grid spacing. For the case of first derivative an analytical relation is ob-
tained for the scheme which is better than using Taylor expansion especially for time varying adaptive grids
since there is no need to solve for the undetermined coefficients. The method can be easily extended to higher
order compact schemes and the computational cost for determining coefficients of the interpolation poly-
nomial will always be less than the cost of evaluating coefficients of the compact scheme using Taylor
expansion. The high-order non-uniform grid schemes of up to 14th order along with the boundary closures
of the same order as interior, derived using polynomial interpolation, are tested for solutions of wave equa-
tion in one and two dimensions and a model convection—diffusion equation. The results show that the
schemes are stable and are able to produce highly accurate results provided enough grid points are clustered
near the boundary.
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Appendix A

In this section, we compare the computational cost of determining the coefficients of the compact
schemes to the cost of obtaining the derivatives. A general compact finite difference formulation on a N
point domain is of the form [P]{#} = [Q]{u}, where function values(in vector form) {u} are known and
the unknown vector {&} can be {u'} for first derivative, {#"} for the second derivative and so on. In general
matrices [P] and [Q] have the following form:

L aipe 0
as 1 ce A2(n+2)
[P] = g 1 Ay ,
AN-1)(N-n-1) """ L aw-n
L 0 AN(N-n) 1 ]
[ by e brami3nt1) 0
by -+ bromism
0] = byanm by enim
bv-tyw-am-3nsty - bw-nn
| 0 bvv—om—3ny - s bw |

Thus matrices [P] and [Q] are both banded with bandwidths of 2n + 1 and 2(n + m) + 1, respectively. In
addition, the width of the stencil at the boundary is increased so that both the interior and boundary clo-
sure schemes have the same order. Once coefficients of the matrices are known it is easy to find that the
calculation of derivatives requires N(n* + 5n + 2m + 2) + 2n(n + 1) multiplications and N(n”> + 4n + 2m) +
2n(n + 1) additions.

The cost of calculating coefficients of the matrix [P] and matrix [Q] for the first derivative is now ob-
tained. Since the coefficients of the compact scheme involve product functions and their derivatives, we
need to estimate the computational cost for calculation of these functions first. The formulae for calculation
of the lagrange and product polynomials on a set of k points I}, and their first and second derivative along
with the number of operations required are given in Table A.1.

Now let us consider the compact scheme given by (14) such that 7,, has p + 1 points (including node i)
and I, has ¢ points. Using Table A.1 the cost of calculation of coefficients for the compact scheme can be
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found out to be 9¢> + 2p* + 9pg — p — 3¢ + 1 multiplications and 104 + 2p* + 10pg + p — 2¢q — 1 additions.
Then the cost of evaluating the coefficients of the matrices [P] and [Q] can be found out to be
N(36n* + 8m* + 36mn — 2m — 6n + 1) — n(n + 1)(2m + 3n — 2) multiplications and N (40n* + 8m?* + 40mn+
2m —4n —1) —2n(n+ 1)(2m + 3n — 3) additions. A comparison of the cost of calculating coefficients to
the cost of calculating first derivative for some high-order first derivative compact schemes is presented

in Table A.2.

Appendix B

Hermite interpolation can be used to obtain explicit expression for the combined compact schemes. For
this let us consider the problem of finding interpolation polynomial for a case in which function values
u(x;) = u; have been specified on a set of points, I,,, the values of both the function and its first derivative
' (x;) = u} have been specified at another set of points, I, and the values of not only the function u(x;) = u;
and its first derivative but also the second derivative u”(x;) = u/ have been specified on another set of

Table A.1
Computational cost of calculating polynomials
Polynomial Mult. Add.
[Te (i) = [jes, (xi — x;) k-1 k
() = [er i — %) if xi € Lk k-2 k-1

k(i 1) (e 5 ;/) if x; & Iy 2k 3k —1

| .

1) = 2 Ler ¥ = x.f)(%:jelk#z‘ ) if x; € Iy 2k — 1 3 —4

 (xi) = . 2 2

k [T (e +) - ﬁ) if x; &1 2% — k 3k -2k — 1

H (xi=xp)
I(x;) = — 2% -3 2% -2
4 (X ) H/e/k./f,(xffx’)
(xi—x,
, LTy im0 if x; € I, 2% —4 2k -3
lj (xi) = H/e:k.m(’(’ﬂ”) 3k 3 4k — 5
l}’,(- (xi)(21€1k.1¢jx,+x,) if x; & I
H €l 1] (i) :
) = | 2Tl o teuasss) i 0y -4 48
j N . 262 — 4k +2 3k — Tk +3
lf(xf)((zzglA¢/ﬁ)2 =D etz m) if x; & Iy

Table A.2
Computational cost comparison for calculation of coefficients and calculation of first derivative on a N point one-dimensional domain
Scheme m n Cost for coeflicients Cost for derivative

Mult. Add. Mult. Add.
4th-order Tridiagonal 0 1 31N 35N +4 SN +4 SN+4
6th-order Tridiagonal 1 1 73N — 4 85N — 4 10N + 4 TN + 4
8th-order Tridiagonal 2 1 131N -8 151N — 12 12N +4 9N +4
10th-order Tridiagonal 3 1 205N — 12 233N — 20 14N + 4 1IN +4
8th-order Pentadiagonal 0 2 133N — 4 IS5IN+4 16N + 12 12N + 12
10th-order Pentadiagonal 1 2 211N — 16 241N — 20 ISN +4 14N + 12
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points, I.. The scheme for the second derivative can be derived by choosing I, = {¢} and then taking a dou-

ble derivative of the interpolating polynomial at the point x = x;

u + b + Z (aju}’ + bju;.> = ciu; + chuj + Zéjuj,
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Compact schemes for first derivative on uniform and non-uniform stencils
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Table B.2
Compact schemes for second derivative on uniform and non-uniform stencils
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For derivation of the scheme for first derivative a choice of I,, = {i} and then a derivative of the inter-
polation polynomial obtained at x = x; yields
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Table B.3
Combined compact schemes on uniform and non-uniform stencils

Non-uniform grid Uniform grid
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o= UL} oo i)

+(x; _xi)2 X (H/:EZ§>2 + 6(11(/ X)) )2 + 3Tngglf/(xj> - 21}[:::,,(?;])) —%lj{”( 7)

If I, and I contain m and k points, respectively, then the order of the combined compact scheme will be
(3k + m). It may also be noted that a proper choice of sets of points I, and I will yield boundary closure
schemes. Two examples of sixth- and eighth-order schemes for the interior are shown in Table B.3. Note
that sixth-order accurate non-uniform combined compact schemes have been presented in [14]. The
sixth-order combined compact scheme for first derivative given in Table B.3 is the same as that in [14].
However, the second derivative non-uniform combined compact scheme presented in [14] is not sixth-order
accurate but fifth order only which can be verified by deriving the truncation error as 6(k; — 1)k7h’ /7! using
a simple Taylor expansion.
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